什么是氨能源?
顾名思义,氨能源是一种以氨为基础的新能源,旨在以无碳化合物作为清洁能源来代替化石燃料。本世纪以来氨燃料的研发应用越来越受到重视。美国、加拿大、荷兰、日本等国家的学者均在积极探索氨能的发展潜。2004年起,美国每年举行一次“氨学术交流会议”,2008年更是将会议主题定为“氨-美国能独立的关键”。
氨能源如何应用?
上世纪中期,比利时研究人员首先将氨作为燃料用于驱动汽车。美国航天局利用氧作为动力燃料开发研制了X-15型试验飞机。俄罗斯发动机制造商Energomash公司正在研制以氨-乙炔混合物为燃料的新型发动机。瑞典ASEA公司设计了一台200千瓦的液氨-液氧燃料电池用于驱动潜水艇。从上世纪六十年代开始,氨燃料从军用到民用,正在逐渐地市场化。
而美国为了应对石油危机,研发成功氨燃料超音速飞机,俄罗斯也在近几年研发氨燃料火箭发动机。而日本、韩国的不少汽车公司也研发推出氨燃料汽车。在不少发达国家的农场都开始利用风能、太阳能,制取氨燃料、氨化肥。
为什么要发展氨能源?
环境友好、成本低廉、安全性高。从氨燃料的特点来说,氨的空燃比低,这说明在同样的空气进量下能提供更多的能量,可以作为高功率燃料。同时,氨燃烧的热损失比远低于汽油和氢气,意味着高温氮气带走的热量损失也就大大减少。同时氨燃烧后尾气排放总量最少,也没有二氧化碳的排放;But,氨能源的应用还是遭到了一些质疑的。
自氨被制造出来之后,到现在已经大规模生产,并出口到世界各地生产化肥。在此之后,日本研究人员却有了新的突破,日本承诺在2050年前将实现碳中和,这给重量级工业企业带来了希望,并且还将使众多企业走出经济泥潭。研究人员打算将氨作为未来的燃料,但是有的批评人士说,腐蚀性气体还远不是一种明确的清洁能源。但是燃烧氨与化石燃料不同,它不排放使地球变暖的二氧化碳,而且比起化石燃料更容易运输。液氨,也被吹捧为绿色燃料的潜在来源。
这吸引了一个大型日本公司财团的兴趣,该财团热衷于向日本大规模进口这种燃料,自福岛核灾难以来,日本几乎没有化石燃料储备,而且核电能力也有限。绿氨联合会执行副总裁兼代表主任村崎茂说,“氨水是日本最便宜、最可行的选择”。日本首相认为,“2040年以前”,氨可以产生日本电力需求的十分之一。但是,这种气体能否提供超越核能的能量,在很大程度上取决于未来的技术创新,尤其是因为目前大多数生产氨气的方法本身都会排放二氧化碳。而在生态方面, “绿色”氨,由水、空气和可持续电力的化学反应制造。据英国皇家学会一家独立的科学组织称,它是100%的可再生和无碳的。
但是目前,人类只能从现有供应商那里使用符合成本效益的灰氨,因为在未来几年内,蓝色氨都将无法供应。截止现在,氨能源市场仍处于起步阶段。未来发展的潜力巨大。9月,沙特石油公司和日本能源智库组织了一批40吨的蓝色氨运往日本,在一个燃煤发电站和两个小型燃气轮机中进行实验燃烧,这位研究氨能源提供了更好的数据来源;环保人士对此不以为然,他们认为真正的重点应该是可再生资源而不是重新定位化石燃料。
实际上不仅仅是日本,中国布局氢能源研发也是能源战略上的重要组成部分,我国对氨能源研究起步较晚、实际应用中难免产生氮氧化物、氨气单独燃烧效果较差、合成氨工业耗能巨大;但是我们一直没有停止在这方面的技术探索~“在‘碳中和’愿景下,氨经济是一种必然。但要促成其发展,还必须解决社会接受度问题。”苏州大学能源学院院长晏成林在接受采访时说,“大众能否接受氨作为大规模燃料和能源载体,不仅需要进一步开展研究、制定标准和程序,还需要政府的政策性支撑。”
传统工艺不可持续
从实验室到工业化生产,科学家对合成氨技术探索了100多年。20世纪初,德国化学家Fritz Haber和Carl Bosch等人提出了Haber-Bosch法,开启了合成氨的大规模工业化进程。基于该方法,用大量氨生产出的化肥,增加了全球粮食产量。
厦门大学氨能源工程实验室研究员朱维源表示,传统的Haber-Bosch法合成氨技术以化石燃料为氢源和热源,造成大量的二氧化碳排放。目前,我国年合成氨产量约5000多万吨,碳排放量每年约2亿吨。在应对全球气候变暖和“双碳”目标下,基于化石燃料的传统合成氨工业很难持续。目前,Haber-Bosch法仍是唯一具有工业规模的合成氨技术。晏成林表示:“由于该工艺会消耗大量化石能源,并造成碳排放,因此,寻找合适的绿色替代方案,在温和条件下实现高效、低能耗、低排放、可持续的氨生产,是亟待解决的科学挑战。”
为了“切断”合成氨与化石燃料和碳排放的“亲密关系”,科学家正在探索更多的绿色制氨方法:“例如固氮酶合成氨、光催化合成氨、电催化合成氨、等离子体法合成氨、循环工艺法合成氨以及超临界合成氨等。其中固氮酶合成氨、光催化合成氨及电催化合成氨的关注度较高。”晏成林说。
他认为,光催化合成氨具有传统的半导体材料成本低廉、易于制备且光稳定性好等优点,但容易受到太阳能不确定性和效率低的限制。而电催化氮还原反应以可持续能源发电,在常温常压的温和条件下即可实现绿色、零排放合成氨,但氮气稳定的化学键、较高的第一解离能及其在水中较低的溶解度,也为电催化合成氨反应造成了极大的障碍。
对于固氮酶合成氨技术,晏成林认为,该工艺具有电子效率高、能耗低的优点,但反应速度慢限制了氨产率的提高,此外,催化剂的稳定性和回收利用也是难题。朱维源团队近年来主要研究的是“间歇式清洁电力HB法合成绿氨工艺”,该方法使用的原料只有可再生电力、水和空气,副产品只有氧气,是清洁可持续的合成氨生产方式。其成本主要是电力成本,随着光伏、风电等产能的壮大,成本将逐步降低。
绿氨经济时代
朱维源表示,未来,“绿氨”可以替代目前大部分化石燃料的应用场景,而我国拥有巨大的生产绿氨燃料所需的可再生电力优势,从该角度看,“绿氨”燃料体系将在解决我国能源安全上提供重大帮助。但他指出,要实现绿氨能源的大规模应用,还要解决氨的受控稳定安全燃烧难题、氮氧化物排放难题和材料腐蚀等技术问题。
朱维源对氨经济的到来非常乐观。“在国际领域,近年来大型绿氨能源投资事件层出不穷,随着国际间碳边境税的收取及碳交易市场的完善,氨经济的浪潮将会在5~6年后到来”。晏成林也对氨经济的出现充满信心。“氨作为可运输可再生能源的主要形式的潜力显而易见,能够在未来的大部分领域取代化石燃料,成为可再生能源技术的核心组成部分之一。”在他看来,全球范围内一场新的能源革命即将到来。“通过广泛而深刻的经济社会变革,由基于化石燃料的经济转变为基于氨燃料的经济,有望如期实现‘双碳’目标,推动人类社会从‘工业文明’向‘生态文明’迈进。”